
an Developer eBook
®

Android Mobile
Application Development

from A to Z

2	 The Android Mobile Development Platform:

	 A Reference Guide

6	 Top 10 Features for Developers in Android 2.2

9	 Building Your First PHP for Android Application

13	 Building Killer Android Tablet Apps:

	 Design and Development Tips

6

13

2

9

Contents…

This content was adapted from Internet.com’s Developer.com website.
Contributors: Shane Conder, Lauren Darcey and Keith Vance.

Android Mobile Application
Development from A to Z

2 Android Mobile Application Development from A to Z an Internet.com Developer eBook. © 2010, Internet.com, a division of QuinStreet, Inc.Back to Contents

Android Mobile Application
Development from A to Z

ndroid, an open source mobile platform
with no upfront fees, has emerged as a new
mobile development option that offers many
benefits over competing platforms. But is it

right for your project? In this reference guide, you’ll learn
all the nitty-gritty details you need to know to evaluate
Android, including the tools and
technologies for developing
on the platform as well as the
required costs. Armed with this
information, you can make an
informed decision as to whether
or not Android is the right fit
for your particular organization
or development project.

Android Programming
Languages

Native Android applications are
written in Java. Applications
requiring existing C/
C++ libraries can take
advantage of the Android
Native Development Kit (NDK).

In addition to native Android applications written
in Java, Adobe Flash and Adobe AIR support
were added in Android 2.2, enabling a whole new
group of developers to target Android devices.

Development Tools and Setup Costs

Unlike many mobile development platforms, Android
is open and freely available. There are no developer
fees or screening processes, nor must developers
purchase expensive compilers or limit themselves to
one specific operating system for development.

Android applications can be developed on a
variety of operating systems, including:

•	 Windows XP (32-bit), Vista (32-bit or 64-bit), and
	 Windows 7 (32-bit and 64-bit)

•	 Mac OS X 10.5.8 or later (x86 only)

•	 Linux (tested on Linux Ubuntu
	 8.04 LTS, Hardy Heron)

The Android SDK and
development tools are freely
available on the Android
developer site, where developers
can download the SDK after
agreeing to the terms of the
Android SDK License Agreement.
Developers must also have JDK
5.0 or JDK 6 (freely available).

In terms of integrated
development environments
(IDEs), developers have a number
of choices. Eclipse is the most

popular IDE for Android development because it offers a
handy Android Development Tools (ADT) plugin. At the
time of writing, the ADT plugin supported both Eclipse
3.4 and 3.5. Developers can use other IDEs if they desire;
the command-line tools that come with the Android SDK
facilitate Android development and provide many of
the features available within the Eclipse ADT plugin (e.g.
creating projects, packaging resources and generating
Android package files for deployment to devices, etc.).

Android Devices: Features, Functions and
Availability

The only real cost for Android developers is the

The Android Mobile Development Platform: A
Reference Guide

By Shane Conder and Lauren Darcey

A

http://www.developer.com/ws/article.php/3893591/The-Android-Mobile-Development-Platform-A-Reference-Guide.htm
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/terms.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://developer.android.com/sdk/eclipse-adt.html

3 Android Mobile Application Development from A to Z an Internet.com Developer eBook. © 2010, Internet.com, a division of QuinStreet, Inc.Back to Contents

Android Mobile Application
Development from A to Z

acquisition of device hardware. Although the Android
team has insisted that testing within the Android
emulator is generally sufficient for most development,
we feel that emulators are no real substitute for
testing on (at least some) target devices.

Fortunately (and unfortunately), many Android devices
are available on the global market today. Consumers
have an unprecedented number of choices in terms
of distinctive devices, carriers, and payment plans.
According to the official Google Blog, as of mid-2010,
more than 60 Android handsets shipped from 21 different
manufacturers. These Android devices are available on 59
carriers in 48 countries. In June 2010, Google announced
that more than 160,000 Android devices are being
activated each day (a rate of nearly 60 million devices
annually).

Most Android devices are considered smartphones, with
all the goodies one would expect (e.g. fast processors,
touch screens, high-megapixel cameras, LBS services,
accelerometers and so on). That said, other devices also
run on the Android platform, including Internet tablets,
e-book readers, TV boxes and others. It is certainly
feasible to create a single application that can run
smoothly across all these devices. However, developers
will still need to identify and understand their target users
and devices. Luckily, the Android platform and tools are
designed to ensure maximum compatibility and to make
compatibility a (relatively) straightforward matter for
developers.

If you’re unsure which Android devices to acquire for
development purposes, consider one of the Android Dev
phones, ADP1 or ADP2, which are available for purchase
if you sign up as a developer to publish on Google’s
Android Market. The Android Dev phones are SIM-
unlocked and therefore usable on any GSM network; they
feature a bootloader that allows you to flash the device
with different system images (helpful for mimicking
various device platforms on a single device). Another
SIM-unlocked handset is the Google Nexus One.

Android Development Framework and APIs

The Android application framework includes familiar
programming constructs, such as threads and
processes and specially designed data structures to
encapsulate objects used by the Android operating
system. With Android, developers use familiar class
libraries exposed through Android’s Java packages
to perform common tasks such as graphics, database
access, network access, secure communications and
utilities. In addition to these familiar Java class libraries,
such as java.net, developers can also rely on specialty
libraries using well-defined open standards like
OpenGL Embedded Systems (OpenGL ES), SQLite, and
WebKit. The Android packages include support for:

•	 User interface controls (Buttons, Dropdowns, Text
	 Input, Grids, Tabs, Gallery)
•	 Flexible user interface design and layout
	 (programmatically or via XML)
•	 Secure networking and Web-browsing features
	 (SSL, WebKit, XML parsing)
•	 Structured storage and relational databases (SQLite)
•	 Powerful 2D and 3D graphics (including OpenGL ES 2.0
•	 Enhanced support for audio, still images, and video
	 media in many formats, “ducking,” etc.
•	 Access to underlying hardware sensor data, the
	 camera, accelerometer, etc.
•	 Access to underlying services like location-based
	 services (LBS), Wi-Fi, Bluetooth, etc.
•	 A robust unit testing framework for
	 automated testing of Android apps

One of the Android platform’s most compelling features
is well-designed application integration. Developers
can write applications that integrate seamlessly with
other Android applications, including core platform
applications such as the Browser, Maps, Contacts,
Messaging and Email.

On the Android platform, all apps are created equal.
There is no distinction between native and third-party

http://now.sprint.com/android/?ECID=vanity:android
http://now.sprint.com/android/?ECID=vanity:android
http://www.developer.com/ws/article.php/3893591/The-Android-Mobile-Development-Platform-A-Reference-Guide.htm

4 Android Mobile Application Development from A to Z an Internet.com Developer eBook. © 2010, Internet.com, a division of QuinStreet, Inc.Back to Contents

Android Mobile Application
Development from A to Z

applications, enabling healthy competition among
application developers. All Android applications use the
same libraries and have access to the same permissions
options and functionality. Android applications have
direct access to the underlying hardware, allowing
developers to write much more powerful applications.

The Android SDK also comes with extensive developer
documentation. Developers can also find the complete
documentation online with videos, the official Android
developer blog and an active Android development
community.

Publication Opportunities and Target Audience

In terms of market share, the Android platform has been
gaining ground steadily against competitive platforms
such as the Apple iPhone, RIM BlackBerry and Windows
Mobile (all of which have been around considerably
longer). The latest numbers from The Nielsen Company
(as of Summer 2010) show BlackBerry in the lead with 35%
of the smartphone market, and declining. Trailing close
behind and gaining is Apple’s iPhone at 28% and Microsoft
Windows Mobile is declining with a 19% showing. Android
is trailing with 9%, but its growth numbers are accelerating
rapidly and according to some sources Android devices
are selling faster than most, if not all, competing platforms.
If you look back over the past 18 months since Android
first became available to consumers, you can see that the

platform has been gaining ground steadily at the expense
of its competitors, yet the market could potentially
accommodate substantially more growth by the platform.

Android applications have none of the costly and time-
intensive testing and certification programs required by
other platforms. Android developers are free to choose
any kind of revenue model they want. They can develop
freeware, shareware or trial-ware, ad-driven applications,
and paid applications. With Android, developers can
write and publish any kind of application. Developers can
tailor applications to small demographics, instead of just
the large-scale money-making ones often insisted upon
by mobile operators. Vertical market applications can be
deployed to specific, targeted users.

Because Android developers have a variety of application-
distribution mechanisms to choose from, they can pick
the methods that work for them instead of being forced
to play by others’ rules. Android developers can distribute
their applications to users in a variety of ways. The most
popular distribution mechanism is Google’s Android
Market. The Android Market is a generic application
store with a revenue-sharing model. As of July 2010,
more than 90,000 applications were available in the
Android Market. Many other Android applications have
been sold through other publication channels. More
than 180,000 Android developers have downloaded the
Android SDK and developed Android applications.

Pros Cons

Apps written in Java, which is an easy, commonly
understood programming language

If you don’t like Java, you’re out of luck.

Very low barrier to entry. No vetting of developers
to determine whether they are worthy of developing
apps. No fees to join development community.

Developer expertise and application quality will vary
greatly. Neither apps nor developers are “curated”
as they sometimes are on other platforms, but
technically, malicious developers exist on all platforms.

Freely available development tools are popular,
powerful and generally well designed. In fact, the
Android development tools are impressive compared
to others provided for other mobile platforms.

Like all mobile platforms, developers are
reliant on the platform and tool developers
to address tool defects and limitations.

Continued to next page...

5 Android Mobile Application Development from A to Z an Internet.com Developer eBook. © 2010, Internet.com, a division of QuinStreet, Inc.Back to Contents

Android Mobile Application
Development from A to Z

Summary

Android developers enjoy many benefits over competing mobile platforms. Android is relatively new to the mobile scene,
offering a distinctly different approach: it’s open and free with robust access to the underlying device hardware. Designed
in Java, Android applications can be created on a variety of operating systems with free and readily available tools.
Getting started with writing mobile applications has never been so easy or affordable. And after you’ve created those
apps, you can rest assured that there are millions of Android users all over the world who are ready to use them.

Android SDK and operating system is powerful,
full of features, and easy to use. There is no
distinction between developer apps and native apps.
Developers have unprecedented access to underlying
hardware on device in a safe and secure manner.

With this power comes greater developer responsibility
to design stable, responsive applications.

Many publication channels available, including
publishing through consolidated app markets as
well as self publication. Suitable for mass market,
enterprise development and everything else.

When developers choose to publish through third-
party app markets, they often must give up a portion
of their profits. Because there are many publication
channels, software piracy becomes a bigger concern.

Vast variety of devices available throughout
the world, on many carriers, with many plans,
including many with unlimited data.

Device variety (aka fragmentation) makes compatibility
something that developers must address (various
screen sizes, optional hardware features, etc.).

Rapidly growing market share. There’s still room
for lots of growth. Applications can still distinguish
themselves, and killer apps are developed all the time.

Still smaller market share than more mature mobile
platforms such as BlackBerry and iPhone.

Free, open platform allows any hardware manufacturer
to build devices based on the open platform.

The freedom to grab the open source Android
platform and place it on any device -- without
anyone’s permission -- can lead to incompatible
devices, confusion among users, and
proliferation of platform devices and distribution
mechanisms for developers to support.

6 Android Mobile Application Development from A to Z an Internet.com Developer eBook. © 2010, Internet.com, a division of QuinStreet, Inc.Back to Contents

Android Mobile Application
Development from A to Z

ndroid 2.2 (codename: Froyo) was a minor
SDK release, but it still packed some punch,
providing both developers and users with
some much-anticipated features. After

attending the Google I/O 2010 conference in May and
witnessing the Froyo announcement, here are the top
10 features (in no particular
order) that we think developers
will benefit from most.

1. Flash 10.1 and AIR
Support

There may be some
disagreement about the viability
of Flash on mobile, but it’s
coming to Android phones.
Whether or not Flash is the
future is really not the question;
for now, Flash is pretty pervasive
on the Web, so cutting it out is
in effect cutting out many of the
dynamic Web apps users already
enjoy.

Beginning with the Froyo release, Android users will
be able to download the open beta version of Flash
10.1 as well as AIR support (in the form of an Android
application) from the Android Market. This decision
substantially expands the number of Web applications
and sites accessible to Android users and widens the
development community for Android substantially.

This may become a double-edged sword for Android
developers, however. How will this change the content
of the Android Market? With boatloads of Flash apps
out there, why would anyone want to bother creating a

Top 10 Features for Developers in Android 2.2
By Shane Conder and Lauren Darcey

A
native Android app version? Well, there certainly are valid
reasons, but we think a lot of companies would need to
be convinced when native apps require them to target
multiple platforms to reach their customers. Maybe Flash
apps will help weed out the weak and badly written
native Android app competition, but will it strengthen

the Android development
community as a whole? We’ll
have to wait and see.

2. Push Messaging

Developers can now leverage
another of Google’s services,
the Android Cloud to Device
Messaging (C2DM) framework.
This framework provides a
service for enabling limited
push functionality to Android
devices through Google services,
which handle the queuing and
secure delivery of lightweight
messages to the device. While

the framework is getting ironed out, developers can sign
up at the Google Labs website. Google apps, such as
the Android Market for the Web, will soon be using this
feature to push Android applications purchased via the
Web to the phone over the air. This technology should
help resolve some of the crazy polling traffic caused
by Android applications at the moment (resulting in
reduced battery life, performance reductions, etc.).

3. New Enterprise Features

Android is finally positioning itself for some serious
enterprise use. The Android 2.2 SDK includes new Device
Administration APIs (android.app.admin) for remote and

7 Android Mobile Application Development from A to Z an Internet.com Developer eBook. © 2010, Internet.com, a division of QuinStreet, Inc.Back to Contents

Android Mobile Application
Development from A to Z

to pause and resume all streams so an application
no longer needs to keep track of each nor do these
actions on each individual stream. These improvements
ease implementation and enhance efficiency.

6. Across-the-Board SDK Enhancements

Numerous Android APIs were added as part of the 2.2
release. Graphics and game developers will welcome the
support for OpenGL ES 2.0 and ETC1 texture-compression
support. Services like speech recognition (android.speech)
received substantial upgrades and peripheral APIs such as
those that support the Camera and Camcorder have been
greatly improved. A new UI Mode Manager (android.app.
UIModeManager) service adjusts the device configuration
for night mode, car mode, and desk mode (docking state).

As of Android 2.2, applications are not limited to
installation paths on the main device, but can also be
installed on external storage such as an SD card. There
is also a new generic data backup service Android
applications can use to allow users to transition seamlessly
between Android devices.

In terms of sensible but frustrating API changes,
the layout attribute fill_parent has been renamed
to match_parent (no, it won’t break your old apps
— yet). Even debugging got an enhancement with
a blob-based “logcat” style queue of data in the
form of DropBoxManager. The list goes on.

7. Android Market Updates

There are quite a few updates to the Android Market
coming with the Froyo release. One of the most useful
new features for publishers is built-in error reporting.
If your application crashes on a user’s phone, the user
will have the option to send the error report back to
the specific publisher through the Android Market. This
enables a full-circle, user-developer feedback loop,
allowing publishers to address problems (and receive
valuable crash diagnostic information, such as the device
configuration and stack trace) and avoid ratings disasters.

secure device management. Here you’ll find APIs for
managing device security, including password policy
enforcement and the ability to remotely lock and wipe the
device. For example, if an employee lost his or her device
with its sensitive data and credentials, it could quickly be
locked and wiped of that data.

Froyo also introduces more robust Microsoft Exchange
support (see No. 9). We also heard some murmurs
about Android Market-like deployment solutions for the
enterprise, but these will likely come later (but not in Froyo).

4. Performance Improvements

Developers and users benefit from Froyo’s vast and
deep performance improvements. It seems some of
Google’s most bloodthirsty quality and performance
geeks combed the platform for “jankiness” (a term
heard often from Googlers that means uneven
performance and responsiveness) and built in a lot
more instrumentation and benchmarking behind the
scenes. This much-needed performance overhaul
resulted in a smoother, leaner platform that hums —
and a plan to keep it lean and speedy in the future.

This is partly due to the inclusion of a just-in-time
(JIT) compiler for the Dalvik VM. According to the
Google Android team, Froyo runtime performance is
2 to 5x faster than previous versions of the Android
platform. You can disable JIT optimization within
the application’s Android Manifest file. The Android
browser is also noticeably faster due to its V8 JavaScript
engine, resulting in a 2 to 3x boost in performance
compared to Android 2.1’s browser (also see No. 10).

5. Audio and Media API Improvements

A number of problems and logistical issues with the
Android media APIs have been addressed with the
Froyo release. For example, an Audio Focus API has
been added for managing audio playing etiquette
amongst competing applications. The SoundPool
API was also updated to include a callback for when
an item has completed loading, as well as the ability

8 Android Mobile Application Development from A to Z an Internet.com Developer eBook. © 2010, Internet.com, a division of QuinStreet, Inc.Back to Contents

Android Mobile Application
Development from A to Z

And let’s not forget that Android developers are also
Android users. In addition to the expected performance
improvements and “Chrome” added for the Froyo
platform release, there are a number of compelling
consumer features delivered in Froyo, such as:

8. Tethering and the Portable Hotspot

Froyo delivers USB tethering and the ability to turn
your Android device into a portable Wi-Fi hotspot. This
is a an awesome feature, but we wonder how many
operators/carriers are going to hide and/or disable it,
as some have done with similar features on competing
platforms. If we had to guess, we’d say that this is one of
those compelling features that might improve Android
adoption (although at 100,000 device activations a
day, Android isn’t doing too badly) but also is most
likely to frustrate these same people when they cannot
get that feature on a shipping phone. We’ll see.

9. Microsoft Exchange Support

Nobody likes juggling devices based on whether
they’re using it for work or personal reasons, and there’s
a pretty substantial class of users out there who are
greatly limited in their choice of mobile devices based
upon their corporate IT requirements — notably,
support for Microsoft Exchange. (Frankly, it seems
crazy to us to call anything a “smartphone” if it doesn’t
support Microsoft Exchange, but that’s just us.)

Android 2.2 includes lots of new Microsoft
Exchange features, such as:

•	 Improved security features allowing administrators to
enforce password policies

•	 For Exchange administrators, remote wiping of a device
if it is lost or stolen

•	 Exchange calendar support now compatible with the
Android Calendar app

•	 Auto-discovery for easy account setup and syncing
•	 Android email support for auto-completion of recipient

names and addresses using Microsoft Exchange Global
Address Lists

10. “The World’s Fastest Mobile Browser”

In the Google I/O keynote, Google VP of Engineering
Vic Gundotra made the claim that the Android 2.2
release includes the world’s fastest mobile browser.
He illustrated this claim by basically “lapping” the iPad
browser (even after giving it a head start) in a little race
based upon SunSpider JavaScript benchmarks. Whether
or not the demonstration was a fair apples-to-apples
comparison, the point got across: the performance
improvements made to the Froyo browser made it
wicked fast. Android browser performance makes
everyone happy (OK, maybe not competitors …) and
will surely be appreciated as HTML5 grows up.

9 Android Mobile Application Development from A to Z an Internet.com Developer eBook. © 2010, Internet.com, a division of QuinStreet, Inc.Back to Contents

Android Mobile Application
Development from A to Z

Setting Up the PHP for Android Development
Environment

If you installed PHP for Android, theoretically, you
can write PHP Android applications with your phone.
But for all practical purposes, that doesn’t work very

well. What you should do is
download the Android SDK,
set up an emulator and write
code using your favorite editor.

After you’ve downloaded the
SDK, extract it in a directory of
your choosing, run the Android
application located in the
tools directory, and set up an
emulator. From the Android
SDK and AVD Manager menu,
select Virtual Devices and click
the New button. Name your
new emulator (e.g. “Droid2”)
and select Android 2.2 as the
target. Enter 10 MiB for SD Card
size and click Create AVD.

Now that you’ve got the Droid emulator set up, click
the Start button. Here’s where things get a little tricky,
because you can’t just copy files to the virtual device
you just set up. You have to set up port forwarding
and push your PHP script to the virtual device using
a program called adb, which is part of the Android
SDK. It is located in the tools directory too.

Next, you will start a server on the virtual device.
You will connect with this server to send your
scripts. The following steps will get you up and
running as quickly as possible (you can read the

Building Your First PHP for Android Application
By Keith Vance

oogle’s open source Android mobile
operating system is taking the smartphone
market by storm. Unlike Apple, which has
stringent guidelines and requirements for

developers who want to offer their applications on
the iPhone App Store, Google has left the Android
platform wide open. You can
even write Android applications
in PHP now. The folks at
Irontech have created a PHP
port to run on Android, and
with the Scripting Layer for
Android (SL4A), you can build
PHP Android applications.

In this article, I’ll explain how to
install, set up and use PHP for
Android and SL4A, I’ll present
a demo application as an
example, and I’ll give a first-
hand account of the PHP for
Android developer experience.

Installing PHP for Android

To install PHP for Android, you have to have a phone
or emulator running Android version 1.5 or higher and
you must enable “Unknown Sources” under Application
settings. After you have that set, you simply install the
SL4A environment and the PHP for Android APK.

Installing the SL4A is straightforward, but after you
install the PHP for Android application, you need
then click “install” again for it to be fully installed and
functioning. If you have trouble with the installation,
there’s a handy video demonstration available
on Vimeo to walk you through the process.

G

10 Android Mobile Application Development from A to Z an Internet.com Developer eBook. © 2010, Internet.com, a division of QuinStreet, Inc.Back to Contents

Android Mobile Application
Development from A to Z

full documentation for this process at code.google.
com/p/android-scripting/wiki/RemoteControl).

1.	 With your new virtual device running, go to the
	 Applications screen and click SL4A.
2.	 In the SL4A screen, click the Menu button, select View
	 and choose Interpreters.
3.	 Click Menu again, select Start Server and choose
	 Private.
4.	 Drag the Android notification bar down and you
	 should see SL4A Service. (Click the service and note
	 the port number your server is listening on, e.g.
	 47000.)
5.	 Open up a shell or command prompt and set up port
	 forwarding using the adb tool. For example, enter the
	 command adb forward tcp:9999 tcp:47000, replacing
	 47000 with your port number.
6.	 Set up the AP_PORT environment variable. On UNIX
	 or Mac, run export AP_PORT=9999. On Windows,
	 type set AP_PORT=9999.
7.	 To test your script with your emulator, just run
	 adb push my_script.php /sdcard/sl4a/scripts,
	 replacing my_script.php with the script you wrote.

You can also set this up to work with an actual phone.
Just follow all of the steps you did with your emulator
on your phone. To make things easier, you also
should set up an ANDROID_HOME environmental
variable that points to your Android SDK location
and add the tools subdirectory to your path.

Building an Android Application with PHP

Writing a PHP application to run on Android is really
pretty simple after you set up your development
environment. One thing you’ll notice is that the version
of PHP included with PHP for Android is an extremely
stripped down build. You basically have the core PHP
functions and JSON support — that’s about it. And if
you’re an Android developer who’s familiar with the
Java framework, you’ll notice that the Scripting Layer for
Android doesn’t provide access to all of the components
you’re used to having when building a full-blown Android
application with Java.

What SL4A does provide are “facades” to a subset of the
Android APIs. (A complete listing of all of the methods
available via the SL4A is available at code.google.com/p/
android-scripting/wiki/ApiReference.) But what’s fun
about PHP for Android is that you can quickly prototype
an application and see it in action with just a few lines
of code. I’ll demonstrate this with an application for
checking stock quotes that’s less than 60 lines of code.

Copy and paste the code in Code listing 1 at the end of
this article into your editor and save it as quoter4android.
php and upload it to your emulator. If your emulator
isn’t running, fire it up, configure your port forwarding
and upload the quoter4android.php file with the adb
application included in the Android SDK tools directory.

To run the application in your emulator, go to the
Applications screen, click the SL4A icon and click the
quoter4android.php option.

To install quoter4android.php on your phone, you
can set up port forwarding. But it’s easier to just
plug the phone into your computer via USB and copy
the script into the sl4a/scripts directory. However,
to run scripts on your phone, you have to unplug it
from your computer or else you won’t see any of the
installed scripts when you click on the SL4A icon.

You’ll notice that the first line of this application
sets up a constant QUOTE_SERVER. If you’re used
to building traditional PHP Web applications, you
don’t have to worry about distributing your code and
making changes to it in the future -- that’s not how
it works with Android. You have to distribute your
actual PHP code. So if you decide to put your PHP
Android application in the Android Market and you
hardcode a Web address in it that you don’t control,
your application could break down the road.

For example, this stock quote application actually
pulls the stock information from a Yahoo Web service.
But rather than hardcoding direct access to Yahoo
into the Android application, I created a simple Web
service as a link between the Android application and

11 Android Mobile Application Development from A to Z an Internet.com Developer eBook. © 2010, Internet.com, a division of QuinStreet, Inc.Back to Contents

Android Mobile Application
Development from A to Z

the Yahoo stock service. So now if Yahoo decides to
stop offering this service, or if they change the way it’s
accessed, I can just update my Web service located at
quoter.take88.com. The Android code doesn’t need to
change, and nobody’s walking around with a broken
application on their phone. Also, by leveraging a Web
service, I was able to take some of the complexity out
of the Android application and move it to my Web
service, where I have access to full-blown languages
and not just a stripped down version of PHP. In this
case, I wrote the Web service in Perl using mod_perl.

Conclusion

There’s a lot you can do with the SL4A and PHP for
Android; this article only scratches the surface of what’s
possible. While both projects are very young — in fact,
a new version of SL4A dropped while I was writing this
story (feel free to run the newest version) — as they
mature, more possibilities will present themselves. In any
case, keep your Android applications small, tight and
light.

Code Listing 1. quoter4android.php

<?php

define(‘QUOTE_SERVER’, ‘http://quoter.take88.com/?ticker=%s’);

require_once(“Android.php”);

$droid = new Android();

$action = ‘get_tickers’;

$tickers = ‘’;

while (TRUE) {

 switch ($action) {

 case ‘quote’:

	 $droid->dialogCreateSpinnerProgress(“Querying stock information server ...”, “Please wait”);

	 $droid->dialogShow();

	 $quotes = @array_slice(json_decode(file_get_contents(sprintf(QUOTE_SERVER, $tickers))), 0, 3);

	 $droid->vibrate();

	 $droid->dialogDismiss();

	 // Possible data points.

	 // “SYMBOL”,”NAME”,”LAST_TRADE”,”MORE_INFO”,”LAST_TRADE_DATE”,”LAST_TRADE_TIME”,”OPEN”,”DAYS_

HIGH”,”DAYS_LOW”,”DIVIDEND_SHARE”,”PE_RATIO”,”52_WEEK_LOW”,”52_WEEK_HIGH”,”VOLUME”

	 $output = ‘’;

	 for ($i = 0, $cnt = count($quotes); $i < $cnt; $i++) {

	 $output .= “Company: “ . $quotes[$i]->NAME .”\n”;

	 $output .= “Ticker: “ . $quotes[$i]->SYMBOL . “\n”;

	 $output .= “Last trade: $” . $quotes[$i]->LAST_TRADE . “\n”;

	 $output .= “\n”;

	 }

 $output = html_entity_decode($output, ENT_QUOTES, “UTF-8”);

	 // Something is wrong with '

	 $output = str_replace(“'”, “’”, $output);

	 $droid->dialogCreateAlert(“Your stock quotes”, $output);

12 Android Mobile Application Development from A to Z an Internet.com Developer eBook. © 2010, Internet.com, a division of QuinStreet, Inc.Back to Contents

Android Mobile Application
Development from A to Z

	 $droid->dialogSetPositiveButtonText(“Get new quote”);

	 $droid->dialogSetNegativeButtonText(“Exit”);

	 $droid->dialogShow();

	 $response = $droid->dialogGetResponse();

	 if ($response[‘result’]->which == ‘negative’) {

	 $action = “exit”;

	 } else {

	 $action = ‘get_tickers’;

	 }

	 break;

 case ‘get_tickers’:

	 $response = $droid->getInput(“Stock Tickers (max. 3)”, “Enter Tickers.\nSeparate with

spaces.”);

	

	 $tickers = str_replace(‘ ‘, ‘+’, $response[‘result’]);

	 //	 print_r($response);

	 //$tickers = $response[‘result’];

	 //	 print_r($tickers);

	 $droid->vibrate();

	 $action = ‘quote’;

	 break;

 case ‘exit’:

	 $droid->exit();

	 exit();

	 break;

 }

}

?>

13 Android Mobile Application Development from A to Z an Internet.com Developer eBook. © 2010, Internet.com, a division of QuinStreet, Inc.Back to Contents

Android Mobile Application
Development from A to Z

Building Killer Android Tablet Apps: Design
and Development Tips

By Shane Conder and Lauren Darcey

evice manufacturers are ramping up an
exciting new line of Android devices: tablets.
The success of the Apple iPad has proven
that consumers are ready for these devices,

which make consuming media content like video and
audio a rich and enjoyable experience. But there’s
a catch: until now, Android
developers have made certain
assumptions about the target
devices their apps run on —
assumptions like “the device is a
phone,” “the device has a small
screen” and “the device includes
the Google app experience.”
These assumptions will not
always hold true for tablets
and other types of Android-
powered devices. In this article,
we offer some tips and tricks for
ramping up your skills to design
and develop killer apps for the
Android devices of the future.

Android Supports Tablets?

Yes, and no. You may be aware that Android has
been ported to many kinds of devices, including
phones, toasters, microwaves and laptops. However,
just because Android runs on these devices doesn’t
mean the user experience is great or the device is
officially recognized by the Android community.

So what about the Android tablets that are already in
users’ hands? Well, the Android operating system is open
and free. Manufacturers can put Android on whatever
devices they want to, and many have. Archos has been
making Android tablets for quite some time. However,

these devices run a modified version of the Android OS
that has been tuned for the tablet device. Until now,
tablets have been something of a gray market, but that’s
about to change.

Until recently, Google and the Open Handset Alliance have
not approved any Android tablets
for use with Google proprietary
applications such as Gmail, Maps
and most importantly the Android
Market. This will change with the
next wave of Android tablets;
Google has acknowledged that
tablets and other devices will be
recognized and incorporated into
the Android platform in future
versions of the Android SDK and
the Android Market. Now, there’s
a wave of new Android-powered
devices slated to hit the shelves
late this year and early next
year from the likes of Acer, Dell,
Samsung, Toshiba, Viewsonic,
Archos and more.

Developers are eager to write apps for these exciting
new devices and ensure that their existing apps will
run smoothly. The question is: how? Google has made
a statement to the effect that the current version of
Android (2.2, or Froyo) is not designed for tablets. The
next version of Android (Gingerbread) is likely to address
some of these issues, but developers need not wait to
start preparing for the onslaught of Android tablets.

Application Design for Android Tablets

Lazy development assumptions may have worked when

D

14 Android Mobile Application Development from A to Z an Internet.com Developer eBook. © 2010, Internet.com, a division of QuinStreet, Inc.Back to Contents

Android Mobile Application
Development from A to Z

there was really only one type of device (a phone),
but these bad habits may come back and bite you
when your app is deployed on a device like a tablet.
Reconsider previous design decisions now and update
your applications to make them compliant with the latest
configuration options available on the Android platform
to help ensure that your application is ready for the
future.

The good news is that developing for new Android
devices isn’t going to be that different from developing
for existing ones. Most existing apps will run well
enough, provided they’ve been designed prudently, by
which we mean:

•	 The app properly identifies its application hardware
and software requirements using the Android
Manifest file tags such as supports-screen, uses-
configuration, uses-feature and uses-permission.

•	 The app code checks for hardware, services and
optional APIs before attempting to use them.

•	 The app designers minimized the assumptions about
which exact devices or hardware the application
would run on.

Just as not all Android devices support Bluetooth
or WiFi, there are — and will continue to be — new
optional APIs for working with specific devices,
including tablets. Some of these APIs may be baked into
future versions of the Android SDK (like Gingerbread)
while others may be third-party add-ons available
from manufacturers. These may be similar to such
add-ons available for current handsets; the SenseUI
is available for some but not all HTC devices, or
MotoBlur on some but not all Motorola devices.

User Interface Design for Tablets

When it comes to designing user interfaces for tablets,
it’s best to stick with flexible layout designs that will scale
well to various screen sizes, resolutions and orientations.
This way, users will find the experience familiar,
regardless of what type of device they use. Here are

some tips for designing user interfaces for tablet devices:

•	 Keep screens streamlined and uncluttered and ensure
touch controls such as buttons are of adequate size.

•	 Use flexible layout controls such as LinearLayout
and RelativeLayout as opposed to pixel-
perfect ones such as AbsoluteLayout.

•	 Use flexible dimension values like dp and sp instead of
px or pt.

•	 Use alternative resources such as graphic and
dimension resources to provide specialized resources
for different screen sizes, aspect ratios, pixel densities
and touchscreen types.

•	 Use alternative resources such as layout and graphic
resources to provide specialized resources for
landscape and portrait modes.

Testing Apps for Android Tablet Compatibility

Although few tablets have been released yet, nothing is
stopping you from beginning to test your existing apps
and ironing out the obvious issues. Here are some tips
to keep in mind when testing for tablet compatibility:

•	 Testing on the actual devices (as opposed to the
emulator) will be critical to ensuring your application
behaves as expected. Some devices, such as
Samsung’s Galaxy Tab, have reported their hardware
characteristics differently than expected. For example,
despite having a medium-density screen, Samsung
chose to have its new tablet report as a high-density
screen because it looks better (see Figure 1).

•	 Some tablets may not include the Google
“experience,” so make sure you also test with Android
Virtual Devices (AVDs) that do not include the Google
add-ons.

•	 Tablets, among other devices, are beginning to
take a landscape-first approach to the screen. Make
sure your app displays properly in both orientations
and handles orientation changes correctly.

15 Android Mobile Application Development from A to Z an Internet.com Developer eBook. © 2010, Internet.com, a division of QuinStreet, Inc.Back to Contents

Android Mobile Application
Development from A to Z

Finally, one of the best things you can do right now to
ensure your app is tablet compliant is load your app
into the emulator with a tablet-style AVD configuration
and see how it behaves. For example, use the following
steps to create an AVD configuration that mimics how
your application would display on a tablet much like the
upcoming Galaxy Tab:

1.	 Launch the Android SDK and AVD Manager.

2.	 Press the New… button.

3.	 Enter a name for the tablet (e.g. “Tablet Emu”) and
	 choose an appropriate SDK version, such as Android
	 2.2.

4.	 Create an SD card (we use between 32MB and 512MB).

5.	 For the Skin section, choose Resolution and enter
	 “1024” and “600” into the appropriate boxes. If you
	 enter 1024 then 600, the device will start in landscape
	 mode. If you enter 600 then 1024, it will start in
	 portrait mode.

6.	 For the Abstracted LCD Density, any value will work
	 (although the values 120, 160 and 240 are suggested).
	 To mimic the actual screen density of the Galaxy
	 Tab, enter 170. The device will be treated as a
	 medium-density display. To mimic the reported
	 screen density, enter 240. The device will be treated
	 as having a high-density display.

7.	 Choose Create AVD.

Figure 1. Android App Mimicking a Tablet on a Custom AVD

16 Android Mobile Application Development from A to Z an Internet.com Developer eBook. © 2010, Internet.com, a division of QuinStreet, Inc.Back to Contents

Android Mobile Application
Development from A to Z

8.	 When it’s created, launch it with the Start… button.

9.	 As the display size is rather large, you may wish to
	 scale it down using the launch parameters.

Figure 1 illustrates how an application might appear on a
custom AVD to mimic a tablet. It also demonstrates the
difference between a medium-density display with the
same pixel resolution as a high-density display. Because
the density is different, the buttons on each screen
actually draw at the same size. The medium-density
display, however, shows a lot of wasted screen space. This
not only demonstrates one example of why Android isn’t
quite ready for larger screen tablets, but also shows why
a manufacturer might want to report a different value.

If the rumors are true, the next major release of the
Android SDK (Gingerbread) will begin to address
some of the device differences in some official manner.
Expect to see changes such as additional APIs for
optional hardware, updates to the Android Manifest
configuration options available for targeting specific
device characteristics and perhaps new controls
and screen layout options. We are also likely to see
changes to the Android Market to reflect the plethora
of devices about to reach consumers’ hands. For
example, sources at Google have implied that certain

application permissions (as defined in the Android
Manifest file using the tag) may be used by the Android
Market to filter apps for devices in the future.

In that future, Android-powered devices will likely come
in many forms: phones, PDAs, music players, tablets and
toasters. For now, one of the best things you can do as a
developer is start to think along these lines. Be mindful
of the assumptions you make when developing your
apps, and consider how they will restrict or allow your
apps to run on different types of devices. Review your
existing apps and update them with more flexible user
interfaces and prudent assertions on device features and
characteristics.

With the introduction of Android tablets, developers
now have a whole new range of devices to target
with their applications. Android tablets are likely to
boast larger and higher-resolution touchscreens,
video output options, front-facing cameras and other
optional hardware features — at very reasonable prices.
These features enable developers to write new kinds
of applications and enter new markets. Developing
Android apps for tablets requires some forethought, but
many of the design principles for writing great Android
apps for tablets really apply to all device targets.

