
an Developer eBook
®

Android Mobile
Application Development

from A to Z

2 The Android Mobile Development Platform:

 A Reference Guide

6 Top 10 Features for Developers in Android 2.2

9 Building Your First PHP for Android Application

13 Building Killer Android Tablet Apps:

 Design and Development Tips

6

13

2

9

Contents…

This content was adapted from Internet.com’s Developer.com website.
Contributors: Shane Conder, Lauren Darcey and Keith Vance.

Android Mobile Application
Development from A to Z

2 Android Mobile Application Development from A to Z an Internet.com Developer eBook. © 2010, Internet.com, a division of QuinStreet, Inc.Back to Contents

Android Mobile Application
Development from A to Z

ndroid, an open source mobile platform
with no upfront fees, has emerged as a new
mobile development option that offers many
benefits over competing platforms. But is it

right for your project? In this reference guide, you’ll learn
all the nitty-gritty details you need to know to evaluate
Android, including the tools and
technologies for developing
on the platform as well as the
required costs. Armed with this
information, you can make an
informed decision as to whether
or not Android is the right fit
for your particular organization
or development project.

Android Programming
Languages

Native Android applications are
written in Java. Applications
requiring existing C/
C++ libraries can take
advantage of the Android
Native Development Kit (NDK).

In addition to native Android applications written
in Java, Adobe Flash and Adobe AIR support
were added in Android 2.2, enabling a whole new
group of developers to target Android devices.

Development Tools and Setup Costs

Unlike many mobile development platforms, Android
is open and freely available. There are no developer
fees or screening processes, nor must developers
purchase expensive compilers or limit themselves to
one specific operating system for development.

Android applications can be developed on a
variety of operating systems, including:

•	 Windows	XP	(32-bit),	Vista	(32-bit	or	64-bit),	and
 Windows	7	(32-bit	and	64-bit)

•	 Mac	OS	X	10.5.8	or	later	(x86	only)	

•	 Linux	(tested	on	Linux	Ubuntu
	 	8.04	LTS,	Hardy	Heron)

The Android	SDK	and	
development tools are freely
available on the Android
developer site, where developers
can	download	the	SDK	after	
agreeing to the terms of the
Android	SDK	License	Agreement.
Developers must also have JDK
5.0	or	JDK	6 (freely available).

In terms of integrated
development environments
(IDEs), developers have a number
of choices. Eclipse is the most

popular IDE for Android development because it offers a
handy Android Development Tools (ADT) plugin. At the
time of writing, the ADT plugin supported both Eclipse
3.4	and	3.5.	Developers	can	use	other	IDEs	if	they	desire;	
the	command-line	tools	that	come	with	the	Android	SDK	
facilitate Android development and provide many of
the features available within the Eclipse ADT plugin (e.g.
creating projects, packaging resources and generating
Android package files for deployment to devices, etc.).

Android Devices: Features, Functions and
Availability

The only real cost for Android developers is the

The Android Mobile Development Platform: A
Reference Guide

By	Shane	Conder	and	Lauren	Darcey

A

http://www.developer.com/ws/article.php/3893591/The-Android-Mobile-Development-Platform-A-Reference-Guide.htm
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/terms.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://developer.android.com/sdk/eclipse-adt.html

3 Android Mobile Application Development from A to Z an Internet.com Developer eBook. © 2010, Internet.com, a division of QuinStreet, Inc.Back to Contents

Android Mobile Application
Development from A to Z

acquisition of device hardware. Although the Android
team has insisted that testing within the Android
emulator is generally sufficient for most development,
we feel that emulators are no real substitute for
testing on (at least some) target devices.

Fortunately (and unfortunately), many Android devices
are available on the global market today. Consumers
have an unprecedented number of choices in terms
of distinctive devices, carriers, and payment plans.
According to the official Google Blog, as of mid-2010,
more than 60 Android handsets shipped from 21 different
manufacturers.	These	Android	devices	are	available	on	59	
carriers	in	48	countries.	In	June	2010,	Google	announced	
that more than 160,000 Android devices are being
activated each day (a rate of nearly 60 million devices
annually).

Most Android devices are considered smartphones, with
all the goodies one would expect (e.g. fast processors,
touch	screens,	high-megapixel	cameras,	LBS	services,	
accelerometers and so on). That said, other devices also
run on the Android platform, including Internet tablets,
e-book	readers,	TV	boxes	and	others.	It	is	certainly	
feasible to create a single application that can run
smoothly across all these devices. However, developers
will still need to identify and understand their target users
and	devices.	Luckily,	the	Android	platform	and	tools	are	
designed to ensure maximum compatibility and to make
compatibility a (relatively) straightforward matter for
developers.

If you’re unsure which Android devices to acquire for
development purposes, consider one of the Android Dev
phones, ADP1 or ADP2, which are available for purchase
if you sign up as a developer to publish on Google’s
Android Market.	The	Android	Dev	phones	are	SIM-
unlocked and therefore usable on any GSM	network;	they	
feature a bootloader that allows you to flash the device
with different system images (helpful for mimicking
various device platforms on a single device). Another
SIM-unlocked	handset	is	the	Google	Nexus	One.

Android Development Framework and APIs

The Android application framework includes familiar
programming constructs, such as threads and
processes and specially designed data structures to
encapsulate objects used by the Android operating
system.	With	Android,	developers	use	familiar	class	
libraries exposed through Android’s Java packages
to perform common tasks such as graphics, database
access, network access, secure communications and
utilities. In addition to these familiar Java class libraries,
such as java.net, developers can also rely on specialty
libraries using well-defined open standards like
OpenGL	Embedded	Systems	(OpenGL	ES),	SQLite,	and	
WebKit.	The	Android	packages	include	support	for:

•	 User	interface	controls	(Buttons,	Dropdowns,	Text	
 Input, Grids, Tabs, Gallery)
•	 Flexible	user	interface	design	and	layout	
	 (programmatically	or	via	XML)
•	 Secure	networking	and	Web-browsing	features	
	 (SSL,	WebKit,	XML	parsing)
•	 Structured	storage	and	relational	databases	(SQLite)
•	 Powerful	2D	and	3D	graphics	(including	OpenGL	ES	2.0
•	 Enhanced	support	for	audio,	still	images,	and	video	
 media in many formats, “ducking,” etc.
•	 Access	to	underlying	hardware	sensor	data,	the	
 camera, accelerometer, etc.
•	 Access	to	underlying	services	like	location-based
	 services	(LBS),	Wi-Fi,	Bluetooth,	etc.
•	 A	robust	unit	testing	framework	for	
 automated testing of Android apps

One	of	the	Android	platform’s	most	compelling	features	
is well-designed application integration. Developers
can write applications that integrate seamlessly with
other Android applications, including core platform
applications such as the Browser, Maps, Contacts,
Messaging and Email.

On	the	Android	platform,	all	apps	are	created	equal.	
There is no distinction between native and third-party

http://now.sprint.com/android/?ECID=vanity:android
http://now.sprint.com/android/?ECID=vanity:android
http://www.developer.com/ws/article.php/3893591/The-Android-Mobile-Development-Platform-A-Reference-Guide.htm

4 Android Mobile Application Development from A to Z an Internet.com Developer eBook. © 2010, Internet.com, a division of QuinStreet, Inc.Back to Contents

Android Mobile Application
Development from A to Z

applications, enabling healthy competition among
application developers. All Android applications use the
same libraries and have access to the same permissions
options and functionality. Android applications have
direct access to the underlying hardware, allowing
developers to write much more powerful applications.

The	Android	SDK	also	comes	with	extensive	developer	
documentation. Developers can also find the complete
documentation online with videos, the official Android
developer blog and an active Android development
community.

Publication Opportunities and Target Audience

In terms of market share, the Android platform has been
gaining ground steadily against competitive platforms
such	as	the	Apple	iPhone,	RIM	BlackBerry	and	Windows	
Mobile (all of which have been around considerably
longer). The latest numbers from The Nielsen Company
(as	of	Summer	2010)	show	BlackBerry	in	the	lead	with	35%	
of the smartphone market, and declining. Trailing close
behind	and	gaining	is	Apple’s	iPhone	at	28%	and	Microsoft	
Windows	Mobile	is	declining	with	a	19%	showing.	Android	
is	trailing	with	9%,	but	its	growth	numbers	are	accelerating	
rapidly and according to some sources Android devices
are selling faster than most, if not all, competing platforms.
If	you	look	back	over	the	past	18	months	since	Android	
first became available to consumers, you can see that the

platform has been gaining ground steadily at the expense
of its competitors, yet the market could potentially
accommodate substantially more growth by the platform.

Android applications have none of the costly and time-
intensive testing and certification programs required by
other platforms. Android developers are free to choose
any kind of revenue model they want. They can develop
freeware, shareware or trial-ware, ad-driven applications,
and	paid	applications.	With	Android,	developers	can	
write and publish any kind of application. Developers can
tailor applications to small demographics, instead of just
the large-scale money-making ones often insisted upon
by	mobile	operators.	Vertical	market	applications	can	be	
deployed to specific, targeted users.

Because Android developers have a variety of application-
distribution mechanisms to choose from, they can pick
the methods that work for them instead of being forced
to play by others’ rules. Android developers can distribute
their applications to users in a variety of ways. The most
popular distribution mechanism is Google’s Android
Market. The Android Market is a generic application
store with a revenue-sharing model. As of July 2010,
more than 90,000 applications were available in the
Android Market. Many other Android applications have
been sold through other publication channels. More
than	180,000	Android	developers	have	downloaded	the	
Android	SDK	and	developed	Android	applications.

Pros Cons

Apps written in Java, which is an easy, commonly
understood programming language

If you don’t like Java, you’re out of luck.

Very	low	barrier	to	entry.	No	vetting	of	developers	
to determine whether they are worthy of developing
apps. No fees to join development community.

Developer expertise and application quality will vary
greatly. Neither apps nor developers are “curated”
as they sometimes are on other platforms, but
technically, malicious developers exist on all platforms.

Freely available development tools are popular,
powerful and generally well designed. In fact, the
Android development tools are impressive compared
to others provided for other mobile platforms.

Like	all	mobile	platforms,	developers	are	
reliant on the platform and tool developers
to address tool defects and limitations.

Continued to next page...

5 Android Mobile Application Development from A to Z an Internet.com Developer eBook. © 2010, Internet.com, a division of QuinStreet, Inc.Back to Contents

Android Mobile Application
Development from A to Z

Summary

Android developers enjoy many benefits over competing mobile platforms. Android is relatively new to the mobile scene,
offering a distinctly different approach: it’s open and free with robust access to the underlying device hardware. Designed
in Java, Android applications can be created on a variety of operating systems with free and readily available tools.
Getting started with writing mobile applications has never been so easy or affordable. And after you’ve created those
apps, you can rest assured that there are millions of Android users all over the world who are ready to use them.

Android	SDK	and	operating	system	is	powerful,	
full of features, and easy to use. There is no
distinction between developer apps and native apps.
Developers have unprecedented access to underlying
hardware on device in a safe and secure manner.

With	this	power	comes	greater	developer	responsibility	
to design stable, responsive applications.

Many publication channels available, including
publishing through consolidated app markets as
well	as	self	publication.	Suitable	for	mass	market,	
enterprise development and everything else.

When	developers	choose	to	publish	through	third-
party app markets, they often must give up a portion
of their profits. Because there are many publication
channels, software piracy becomes a bigger concern.

Vast	variety	of	devices	available	throughout	
the world, on many carriers, with many plans,
including many with unlimited data.

Device variety (aka fragmentation) makes compatibility
something that developers must address (various
screen sizes, optional hardware features, etc.).

Rapidly growing market share. There’s still room
for lots of growth. Applications can still distinguish
themselves, and killer apps are developed all the time.

Still	smaller	market	share	than	more	mature	mobile	
platforms such as BlackBerry and iPhone.

Free, open platform allows any hardware manufacturer
to build devices based on the open platform.

The freedom to grab the open source Android
platform and place it on any device -- without
anyone’s permission -- can lead to incompatible
devices, confusion among users, and
proliferation of platform devices and distribution
mechanisms for developers to support.

6 Android Mobile Application Development from A to Z an Internet.com Developer eBook. © 2010, Internet.com, a division of QuinStreet, Inc.Back to Contents

Android Mobile Application
Development from A to Z

ndroid 2.2 (codename: Froyo) was a minor
SDK	release,	but	it	still	packed	some	punch,	
providing both developers and users with
some much-anticipated features. After

attending	the	Google	I/O	2010	conference	in	May	and	
witnessing the Froyo announcement, here are the top
10 features (in no particular
order) that we think developers
will benefit from most.

1. Flash 10.1 and AIR
Support

There may be some
disagreement about the viability
of Flash on mobile, but it’s
coming to Android phones.
Whether	or	not	Flash	is	the	
future	is	really	not	the	question;	
for now, Flash is pretty pervasive
on	the	Web,	so	cutting	it	out	is	
in effect cutting out many of the
dynamic	Web	apps	users	already	
enjoy.

Beginning with the Froyo release, Android users will
be able to download the open beta version of Flash
10.1 as well as AIR support (in the form of an Android
application) from the Android Market. This decision
substantially	expands	the	number	of	Web	applications	
and sites accessible to Android users and widens the
development community for Android substantially.

This may become a double-edged sword for Android
developers, however. How will this change the content
of	the	Android	Market?	With	boatloads	of	Flash	apps	
out there, why would anyone want to bother creating a

Top 10 Features for Developers in Android 2.2
By	Shane	Conder	and	Lauren	Darcey

A
native	Android	app	version?	Well,	there	certainly	are	valid	
reasons, but we think a lot of companies would need to
be convinced when native apps require them to target
multiple platforms to reach their customers. Maybe Flash
apps will help weed out the weak and badly written
native Android app competition, but will it strengthen

the Android development
community	as	a	whole?	We’ll	
have to wait and see.

2. Push Messaging

Developers can now leverage
another of Google’s services,
the Android Cloud to Device
Messaging (C2DM) framework.
This framework provides a
service for enabling limited
push functionality to Android
devices through Google services,
which handle the queuing and
secure delivery of lightweight
messages	to	the	device.	While	

the framework is getting ironed out, developers can sign
up	at	the	Google	Labs	website.	Google	apps,	such	as	
the	Android	Market	for	the	Web,	will	soon	be	using	this	
feature to push Android applications purchased via the
Web	to	the	phone	over	the	air.	This	technology	should	
help resolve some of the crazy polling traffic caused
by Android applications at the moment (resulting in
reduced battery life, performance reductions, etc.).

3. New Enterprise Features

Android is finally positioning itself for some serious
enterprise	use.	The	Android	2.2	SDK	includes	new	Device	
Administration APIs (android.app.admin) for remote and

7 Android Mobile Application Development from A to Z an Internet.com Developer eBook. © 2010, Internet.com, a division of QuinStreet, Inc.Back to Contents

Android Mobile Application
Development from A to Z

to pause and resume all streams so an application
no longer needs to keep track of each nor do these
actions on each individual stream. These improvements
ease implementation and enhance efficiency.

6. Across-the-Board SDK Enhancements

Numerous Android APIs were added as part of the 2.2
release. Graphics and game developers will welcome the
support	for	OpenGL	ES	2.0	and	ETC1	texture-compression	
support.	Services	like	speech	recognition	(android.speech)	
received substantial upgrades and peripheral APIs such as
those that support the Camera and Camcorder have been
greatly improved. A new UI Mode Manager (android.app.
UIModeManager) service adjusts the device configuration
for night mode, car mode, and desk mode (docking state).

As of Android 2.2, applications are not limited to
installation paths on the main device, but can also be
installed	on	external	storage	such	as	an	SD	card.	There	
is also a new generic data backup service Android
applications can use to allow users to transition seamlessly
between Android devices.

In terms of sensible but frustrating API changes,
the layout attribute fill_parent has been renamed
to match_parent (no, it won’t break your old apps
— yet). Even debugging got an enhancement with
a blob-based “logcat” style queue of data in the
form of DropBoxManager. The list goes on.

7. Android Market Updates

There are quite a few updates to the Android Market
coming	with	the	Froyo	release.	One	of	the	most	useful	
new features for publishers is built-in error reporting.
If your application crashes on a user’s phone, the user
will have the option to send the error report back to
the specific publisher through the Android Market. This
enables a full-circle, user-developer feedback loop,
allowing publishers to address problems (and receive
valuable crash diagnostic information, such as the device
configuration and stack trace) and avoid ratings disasters.

secure device management. Here you’ll find APIs for
managing device security, including password policy
enforcement and the ability to remotely lock and wipe the
device. For example, if an employee lost his or her device
with its sensitive data and credentials, it could quickly be
locked and wiped of that data.

Froyo also introduces more robust Microsoft Exchange
support	(see	No.	9).	We	also	heard	some	murmurs	
about Android Market-like deployment solutions for the
enterprise, but these will likely come later (but not in Froyo).

4. Performance Improvements

Developers and users benefit from Froyo’s vast and
deep performance improvements. It seems some of
Google’s most bloodthirsty quality and performance
geeks combed the platform for “jankiness” (a term
heard often from Googlers that means uneven
performance and responsiveness) and built in a lot
more instrumentation and benchmarking behind the
scenes. This much-needed performance overhaul
resulted in a smoother, leaner platform that hums —
and a plan to keep it lean and speedy in the future.

This is partly due to the inclusion of a just-in-time
(JIT)	compiler	for	the	Dalvik	VM.	According	to	the	
Google Android team, Froyo runtime performance is
2	to	5x	faster	than	previous	versions	of	the	Android	
platform. You can disable JIT optimization within
the application’s Android Manifest file. The Android
browser	is	also	noticeably	faster	due	to	its	V8	JavaScript	
engine, resulting in a 2 to 3x boost in performance
compared to Android 2.1’s browser (also see No. 10).

5. Audio and Media API Improvements

A number of problems and logistical issues with the
Android media APIs have been addressed with the
Froyo release. For example, an Audio Focus API has
been added for managing audio playing etiquette
amongst	competing	applications.	The	SoundPool	
API was also updated to include a callback for when
an item has completed loading, as well as the ability

8 Android Mobile Application Development from A to Z an Internet.com Developer eBook. © 2010, Internet.com, a division of QuinStreet, Inc.Back to Contents

Android Mobile Application
Development from A to Z

And let’s not forget that Android developers are also
Android users. In addition to the expected performance
improvements and “Chrome” added for the Froyo
platform release, there are a number of compelling
consumer features delivered in Froyo, such as:

8. Tethering and the Portable Hotspot

Froyo	delivers	USB	tethering	and	the	ability	to	turn	
your	Android	device	into	a	portable	Wi-Fi	hotspot.	This	
is a an awesome feature, but we wonder how many
operators/carriers are going to hide and/or disable it,
as some have done with similar features on competing
platforms. If we had to guess, we’d say that this is one of
those compelling features that might improve Android
adoption (although at 100,000 device activations a
day, Android isn’t doing too badly) but also is most
likely to frustrate these same people when they cannot
get	that	feature	on	a	shipping	phone.	We’ll	see.

9. Microsoft Exchange Support

Nobody likes juggling devices based on whether
they’re using it for work or personal reasons, and there’s
a pretty substantial class of users out there who are
greatly limited in their choice of mobile devices based
upon their corporate IT requirements — notably,
support for Microsoft Exchange. (Frankly, it seems
crazy to us to call anything a “smartphone” if it doesn’t
support Microsoft Exchange, but that’s just us.)

Android 2.2 includes lots of new Microsoft
Exchange features, such as:

•	 Improved security features allowing administrators to
enforce password policies

•	 For Exchange administrators, remote wiping of a device
if it is lost or stolen

•	 Exchange calendar support now compatible with the
Android Calendar app

•	 Auto-discovery for easy account setup and syncing
•	 Android email support for auto-completion of recipient

names and addresses using Microsoft Exchange Global
Address	Lists

10. “The World’s Fastest Mobile Browser”

In	the	Google	I/O	keynote,	Google	VP	of	Engineering	
Vic	Gundotra	made	the	claim	that	the	Android	2.2	
release includes the world’s fastest mobile browser.
He illustrated this claim by basically “lapping” the iPad
browser (even after giving it a head start) in a little race
based	upon	SunSpider	JavaScript	benchmarks.	Whether	
or not the demonstration was a fair apples-to-apples
comparison, the point got across: the performance
improvements made to the Froyo browser made it
wicked fast. Android browser performance makes
everyone	happy	(OK,	maybe	not	competitors	…)	and	
will	surely	be	appreciated	as	HTML5	grows	up.

9 Android Mobile Application Development from A to Z an Internet.com Developer eBook. © 2010, Internet.com, a division of QuinStreet, Inc.Back to Contents

Android Mobile Application
Development from A to Z

Setting Up the PHP for Android Development
Environment

If you installed PHP for Android, theoretically, you
can write PHP Android applications with your phone.
But for all practical purposes, that doesn’t work very

well.	What	you	should	do	is	
download	the	Android	SDK,	
set up an emulator and write
code using your favorite editor.

After you’ve downloaded the
SDK,	extract	it	in	a	directory	of	
your choosing, run the Android
application located in the
tools directory, and set up an
emulator. From the Android
SDK	and	AVD	Manager	menu,	
select	Virtual	Devices	and	click	
the New button. Name your
new emulator (e.g. “Droid2”)
and select Android 2.2 as the
target.	Enter	10	MiB	for	SD	Card	
size and click Create AVD.

Now that you’ve got the Droid emulator set up, click
the	Start	button.	Here’s	where	things	get	a	little	tricky,	
because you can’t just copy files to the virtual device
you just set up. You have to set up port forwarding
and push your PHP script to the virtual device using
a program called adb, which is part of the Android
SDK.	It	is	located	in	the	tools	directory	too.	

Next, you will start a server on the virtual device.
You will connect with this server to send your
scripts. The following steps will get you up and
running as quickly as possible (you can read the

Building Your First PHP for Android Application
By	Keith	Vance

oogle’s open source Android mobile
operating system is taking the smartphone
market by storm. Unlike Apple, which has
stringent guidelines and requirements for

developers who want to offer their applications on
the	iPhone	App	Store,	Google	has	left	the	Android	
platform wide open. You can
even write Android applications
in PHP now. The folks at
Irontech have created a PHP
port to run on Android, and
with	the	Scripting	Layer	for	
Android	(SL4A),	you	can	build	
PHP Android applications.

In this article, I’ll explain how to
install, set up and use PHP for
Android	and	SL4A,	I’ll	present	
a demo application as an
example, and I’ll give a first-
hand account of the PHP for
Android developer experience.

Installing PHP for Android

To install PHP for Android, you have to have a phone
or	emulator	running	Android	version	1.5	or	higher	and	
you	must	enable	“Unknown	Sources”	under	Application	
settings. After you have that set, you simply install the
SL4A	environment	and	the	PHP	for	Android	APK.

Installing	the	SL4A	is	straightforward,	but	after	you	
install the PHP for Android application, you need
then click “install” again for it to be fully installed and
functioning. If you have trouble with the installation,
there’s a handy video demonstration available
on	Vimeo	to	walk	you	through	the	process.	

G

10 Android Mobile Application Development from A to Z an Internet.com Developer eBook. © 2010, Internet.com, a division of QuinStreet, Inc.Back to Contents

Android Mobile Application
Development from A to Z

full documentation for this process at code.google.
com/p/android-scripting/wiki/RemoteControl).

1. With	your	new	virtual	device	running,	go	to	the	
 Applications	screen	and	click	SL4A.	
2. In	the	SL4A	screen,	click	the	Menu	button,	select	View
 and choose Interpreters.
3. Click Menu again,	select	Start	Server	and	choose	
 Private.
4. Drag the Android notification bar down and you
	 should	see	SL4A	Service.	(Click	the	service	and	note	
 the port number your server is listening on, e.g.
	 47000.)	
5. Open	up	a	shell	or	command	prompt	and	set	up	port	
 forwarding using the adb tool. For example, enter the
	 command	adb	forward	tcp:9999	tcp:47000,	replacing
	 47000	with	your	port	number.	
6. Set	up	the	AP_PORT	environment	variable.	On	UNIX	
	 or	Mac,	run	export	AP_PORT=9999.	On	Windows,	
	 type	set	AP_PORT=9999.
7. To test your script with your emulator, just run
	 adb	push	my_script.php	/sdcard/sl4a/scripts,	
 replacing my_script.php with the script you wrote.

You can also set this up to work with an actual phone.
Just follow all of the steps you did with your emulator
on your phone. To make things easier, you also
should	set	up	an	ANDROID_HOME	environmental	
variable	that	points	to	your	Android	SDK	location	
and add the tools subdirectory to your path.

Building an Android Application with PHP

Writing	a	PHP	application	to	run	on	Android	is	really	
pretty simple after you set up your development
environment.	One	thing	you’ll	notice	is	that	the	version	
of PHP included with PHP for Android is an extremely
stripped down build. You basically have the core PHP
functions	and	JSON	support	—	that’s	about	it.	And	if	
you’re an Android developer who’s familiar with the
Java	framework,	you’ll	notice	that	the	Scripting	Layer	for	
Android doesn’t provide access to all of the components
you’re used to having when building a full-blown Android
application with Java.

What	SL4A	does	provide	are	“facades”	to	a	subset	of	the	
Android APIs. (A complete listing of all of the methods
available	via	the	SL4A	is	available	at	code.google.com/p/
android-scripting/wiki/ApiReference.) But what’s fun
about PHP for Android is that you can quickly prototype
an application and see it in action with just a few lines
of code. I’ll demonstrate this with an application for
checking stock quotes that’s less than 60 lines of code.

Copy and paste the code in Code listing 1 at the end of
this	article	into	your	editor	and	save	it	as	quoter4android.
php and upload it to your emulator. If your emulator
isn’t running, fire it up, configure your port forwarding
and	upload	the	quoter4android.php	file	with	the	adb	
application	included	in	the	Android	SDK	tools	directory.

To run the application in your emulator, go to the
Applications screen, click the SL4A icon and click the
quoter4android.php option.

To install quoter4android.php on your phone, you
can set up port forwarding. But it’s easier to just
plug	the	phone	into	your	computer	via	USB	and	copy	
the	script	into	the	sl4a/scripts	directory.	However,	
to run scripts on your phone, you have to unplug it
from your computer or else you won’t see any of the
installed	scripts	when	you	click	on	the	SL4A	icon.

You’ll notice that the first line of this application
sets	up	a	constant	QUOTE_SERVER.	If	you’re	used	
to	building	traditional	PHP	Web	applications,	you	
don’t have to worry about distributing your code and
making changes to it in the future -- that’s not how
it works with Android. You have to distribute your
actual	PHP	code.	So	if	you	decide	to	put	your	PHP	
Android application in the Android Market and you
hardcode	a	Web	address	in	it	that	you	don’t	control,	
your application could break down the road.

For example, this stock quote application actually
pulls	the	stock	information	from	a	Yahoo	Web	service.	
But rather than hardcoding direct access to Yahoo
into	the	Android	application,	I	created	a	simple	Web	
service as a link between the Android application and

11 Android Mobile Application Development from A to Z an Internet.com Developer eBook. © 2010, Internet.com, a division of QuinStreet, Inc.Back to Contents

Android Mobile Application
Development from A to Z

the	Yahoo	stock	service.	So	now	if	Yahoo	decides	to	
stop offering this service, or if they change the way it’s
accessed,	I	can	just	update	my	Web	service	located	at	
quoter.take88.com. The Android code doesn’t need to
change, and nobody’s walking around with a broken
application	on	their	phone.	Also,	by	leveraging	a	Web	
service, I was able to take some of the complexity out
of	the	Android	application	and	move	it	to	my	Web	
service, where I have access to full-blown languages
and not just a stripped down version of PHP. In this
case,	I	wrote	the	Web	service	in	Perl	using	mod_perl.	

Conclusion

There’s	a	lot	you	can	do	with	the	SL4A	and	PHP	for	
Android;	this	article	only	scratches	the	surface	of	what’s	
possible.	While	both	projects	are	very	young	—	in	fact,	
a	new	version	of	SL4A	dropped	while	I	was	writing	this	
story (feel free to run the newest version) — as they
mature, more possibilities will present themselves. In any
case, keep your Android applications small, tight and
light.

Code Listing 1. quoter4android.php

<?php

define(‘QUOTE_SERVER’, ‘http://quoter.take88.com/?ticker=%s’);

require_once(“Android.php”);

$droid = new Android();

$action = ‘get_tickers’;

$tickers = ‘’;

while (TRUE) {

 switch ($action) {

 case ‘quote’:

 $droid->dialogCreateSpinnerProgress(“Querying stock information server ...”, “Please wait”);

 $droid->dialogShow();

 $quotes = @array_slice(json_decode(file_get_contents(sprintf(QUOTE_SERVER, $tickers))), 0, 3);

 $droid->vibrate();

 $droid->dialogDismiss();

 // Possible data points.

 // “SYMBOL”,”NAME”,”LAST_TRADE”,”MORE_INFO”,”LAST_TRADE_DATE”,”LAST_TRADE_TIME”,”OPEN”,”DAYS_

HIGH”,”DAYS_LOW”,”DIVIDEND_SHARE”,”PE_RATIO”,”52_WEEK_LOW”,”52_WEEK_HIGH”,”VOLUME”

 $output = ‘’;

 for ($i = 0, $cnt = count($quotes); $i < $cnt; $i++) {

 $output .= “Company: “ . $quotes[$i]->NAME .”\n”;

 $output .= “Ticker: “ . $quotes[$i]->SYMBOL . “\n”;

 $output .= “Last trade: $” . $quotes[$i]->LAST_TRADE . “\n”;

 $output .= “\n”;

 }

 $output = html_entity_decode($output, ENT_QUOTES, “UTF-8”);

 // Something is wrong with '

 $output = str_replace(“'”, “’”, $output);

 $droid->dialogCreateAlert(“Your stock quotes”, $output);

12 Android Mobile Application Development from A to Z an Internet.com Developer eBook. © 2010, Internet.com, a division of QuinStreet, Inc.Back to Contents

Android Mobile Application
Development from A to Z

 $droid->dialogSetPositiveButtonText(“Get new quote”);

 $droid->dialogSetNegativeButtonText(“Exit”);

 $droid->dialogShow();

 $response = $droid->dialogGetResponse();

 if ($response[‘result’]->which == ‘negative’) {

 $action = “exit”;

 } else {

 $action = ‘get_tickers’;

 }

 break;

 case ‘get_tickers’:

 $response = $droid->getInput(“Stock Tickers (max. 3)”, “Enter Tickers.\nSeparate with

spaces.”);

 $tickers = str_replace(‘ ‘, ‘+’, $response[‘result’]);

 // print_r($response);

 //$tickers = $response[‘result’];

 // print_r($tickers);

 $droid->vibrate();

 $action = ‘quote’;

 break;

 case ‘exit’:

 $droid->exit();

 exit();

 break;

 }

}

?>

13 Android Mobile Application Development from A to Z an Internet.com Developer eBook. © 2010, Internet.com, a division of QuinStreet, Inc.Back to Contents

Android Mobile Application
Development from A to Z

Building Killer Android Tablet Apps: Design
and Development Tips

By	Shane	Conder	and	Lauren	Darcey

evice manufacturers are ramping up an
exciting new line of Android devices: tablets.
The success of the Apple iPad has proven
that consumers are ready for these devices,

which make consuming media content like video and
audio a rich and enjoyable experience. But there’s
a catch: until now, Android
developers have made certain
assumptions about the target
devices their apps run on —
assumptions like “the device is a
phone,” “the device has a small
screen” and “the device includes
the Google app experience.”
These assumptions will not
always hold true for tablets
and other types of Android-
powered devices. In this article,
we offer some tips and tricks for
ramping up your skills to design
and develop killer apps for the
Android devices of the future.

Android Supports Tablets?

Yes, and no. You may be aware that Android has
been ported to many kinds of devices, including
phones, toasters, microwaves and laptops. However,
just because Android runs on these devices doesn’t
mean the user experience is great or the device is
officially recognized by the Android community.

So	what	about	the	Android	tablets	that	are	already	in	
users’	hands?	Well,	the	Android	operating	system	is	open	
and free. Manufacturers can put Android on whatever
devices they want to, and many have. Archos has been
making Android tablets for quite some time. However,

these	devices	run	a	modified	version	of	the	Android	OS	
that has been tuned for the tablet device. Until now,
tablets have been something of a gray market, but that’s
about to change.

Until	recently,	Google	and	the	Open	Handset	Alliance	have	
not approved any Android tablets
for use with Google proprietary
applications such as Gmail, Maps
and most importantly the Android
Market. This will change with the
next	wave	of	Android	tablets;	
Google has acknowledged that
tablets and other devices will be
recognized and incorporated into
the Android platform in future
versions	of	the	Android	SDK	and	
the Android Market. Now, there’s
a wave of new Android-powered
devices slated to hit the shelves
late this year and early next
year from the likes of Acer, Dell,
Samsung,	Toshiba,	Viewsonic,	
Archos and more.

Developers are eager to write apps for these exciting
new devices and ensure that their existing apps will
run smoothly. The question is: how? Google has made
a statement to the effect that the current version of
Android (2.2, or Froyo) is not designed for tablets. The
next version of Android (Gingerbread) is likely to address
some of these issues, but developers need not wait to
start preparing for the onslaught of Android tablets.

Application Design for Android Tablets

Lazy	development	assumptions	may	have	worked	when	

D

14 Android Mobile Application Development from A to Z an Internet.com Developer eBook. © 2010, Internet.com, a division of QuinStreet, Inc.Back to Contents

Android Mobile Application
Development from A to Z

there was really only one type of device (a phone),
but these bad habits may come back and bite you
when your app is deployed on a device like a tablet.
Reconsider previous design decisions now and update
your applications to make them compliant with the latest
configuration options available on the Android platform
to help ensure that your application is ready for the
future.

The good news is that developing for new Android
devices isn’t going to be that different from developing
for existing ones. Most existing apps will run well
enough, provided they’ve been designed prudently, by
which we mean:

•	 The app properly identifies its application hardware
and software requirements using the Android
Manifest file tags such as supports-screen, uses-
configuration, uses-feature and uses-permission.

•	 The app code checks for hardware, services and
optional APIs before attempting to use them.

•	 The app designers minimized the assumptions about
which exact devices or hardware the application
would run on.

Just as not all Android devices support Bluetooth
or	WiFi,	there	are	—	and	will	continue	to	be	—	new	
optional APIs for working with specific devices,
including	tablets.	Some	of	these	APIs	may	be	baked	into	
future	versions	of	the	Android	SDK	(like	Gingerbread)	
while others may be third-party add-ons available
from manufacturers. These may be similar to such
add-ons	available	for	current	handsets;	the	SenseUI	
is available for some but not all HTC devices, or
MotoBlur on some but not all Motorola devices.

User Interface Design for Tablets

When	it	comes	to	designing	user	interfaces	for	tablets,	
it’s best to stick with flexible layout designs that will scale
well to various screen sizes, resolutions and orientations.
This way, users will find the experience familiar,
regardless of what type of device they use. Here are

some tips for designing user interfaces for tablet devices:

•	 Keep screens streamlined and uncluttered and ensure
touch controls such as buttons are of adequate size.

•	 Use	flexible	layout	controls	such	as	LinearLayout	
and	RelativeLayout	as	opposed	to	pixel-
perfect	ones	such	as	AbsoluteLayout.

•	 Use flexible dimension values like dp and sp instead of
px or pt.

•	 Use alternative resources such as graphic and
dimension resources to provide specialized resources
for different screen sizes, aspect ratios, pixel densities
and touchscreen types.

•	 Use alternative resources such as layout and graphic
resources to provide specialized resources for
landscape and portrait modes.

Testing Apps for Android Tablet Compatibility

Although few tablets have been released yet, nothing is
stopping you from beginning to test your existing apps
and ironing out the obvious issues. Here are some tips
to keep in mind when testing for tablet compatibility:

•	 Testing on the actual devices (as opposed to the
emulator) will be critical to ensuring your application
behaves	as	expected.	Some	devices,	such	as	
Samsung’s	Galaxy	Tab,	have	reported	their	hardware	
characteristics differently than expected. For example,
despite	having	a	medium-density	screen,	Samsung	
chose to have its new tablet report as a high-density
screen because it looks better (see Figure 1).

•	 Some	tablets	may	not	include	the	Google	
“experience,” so make sure you also test with Android
Virtual	Devices	(AVDs)	that	do	not	include	the	Google	
add-ons.

•	 Tablets, among other devices, are beginning to
take a landscape-first approach to the screen. Make
sure your app displays properly in both orientations
and handles orientation changes correctly.

15 Android Mobile Application Development from A to Z an Internet.com Developer eBook. © 2010, Internet.com, a division of QuinStreet, Inc.Back to Contents

Android Mobile Application
Development from A to Z

Finally, one of the best things you can do right now to
ensure your app is tablet compliant is load your app
into	the	emulator	with	a	tablet-style	AVD	configuration	
and see how it behaves. For example, use the following
steps	to	create	an	AVD	configuration	that	mimics	how	
your application would display on a tablet much like the
upcoming Galaxy Tab:

1. Launch	the	Android	SDK	and	AVD	Manager.

2. Press the New… button.

3. Enter a name for the tablet (e.g. “Tablet Emu”) and
	 choose	an	appropriate	SDK	version,	such	as	Android	
 2.2.

4. Create	an	SD	card	(we	use	between	32MB	and	512MB).

5. For the Skin section, choose Resolution and enter
	 “1024”	and	“600”	into	the	appropriate	boxes.	If	you	
	 enter	1024	then	600,	the	device	will	start	in	landscape
	 mode.	If	you	enter	600	then	1024,	it	will	start	in	
 portrait mode.

6.	 For	the	Abstracted	LCD	Density,	any	value	will	work	
	 (although	the	values	120,	160	and	240	are	suggested).	
 To mimic the actual screen density of the Galaxy
	 Tab,	enter	170.	The	device	will	be	treated	as	a	
 medium-density display. To mimic the reported
	 screen	density,	enter	240.	The	device	will	be	treated
 as having a high-density display.

7. Choose Create AVD.

Figure 1.	Android	App	Mimicking	a	Tablet	on	a	Custom	AVD

16 Android Mobile Application Development from A to Z an Internet.com Developer eBook. © 2010, Internet.com, a division of QuinStreet, Inc.Back to Contents

Android Mobile Application
Development from A to Z

8. When	it’s	created,	launch	it	with	the Start… button.

9. As the display size is rather large, you may wish to
 scale it down using the launch parameters.

Figure 1 illustrates how an application might appear on a
custom	AVD	to	mimic	a	tablet.	It	also	demonstrates	the	
difference between a medium-density display with the
same pixel resolution as a high-density display. Because
the density is different, the buttons on each screen
actually draw at the same size. The medium-density
display, however, shows a lot of wasted screen space. This
not only demonstrates one example of why Android isn’t
quite ready for larger screen tablets, but also shows why
a manufacturer might want to report a different value.

If the rumors are true, the next major release of the
Android	SDK	(Gingerbread)	will	begin	to	address	
some of the device differences in some official manner.
Expect to see changes such as additional APIs for
optional hardware, updates to the Android Manifest
configuration options available for targeting specific
device characteristics and perhaps new controls
and	screen	layout	options.	We	are	also	likely	to	see	
changes to the Android Market to reflect the plethora
of devices about to reach consumers’ hands. For
example, sources at Google have implied that certain

application permissions (as defined in the Android
Manifest file using the tag) may be used by the Android
Market to filter apps for devices in the future.

In that future, Android-powered devices will likely come
in many forms: phones, PDAs, music players, tablets and
toasters. For now, one of the best things you can do as a
developer is start to think along these lines. Be mindful
of the assumptions you make when developing your
apps, and consider how they will restrict or allow your
apps to run on different types of devices. Review your
existing apps and update them with more flexible user
interfaces and prudent assertions on device features and
characteristics.

With	the	introduction	of	Android	tablets,	developers	
now have a whole new range of devices to target
with their applications. Android tablets are likely to
boast larger and higher-resolution touchscreens,
video output options, front-facing cameras and other
optional hardware features — at very reasonable prices.
These features enable developers to write new kinds
of applications and enter new markets. Developing
Android apps for tablets requires some forethought, but
many of the design principles for writing great Android
apps for tablets really apply to all device targets.

